



**PA-003-001617**      Seat No. \_\_\_\_\_

Seat No. \_\_\_\_\_

## **B. Sc. (Sem. VI) (CBCS) Examination**

March / April - 2020

## **BSMT - 602 (A) : Mathematics**

**(Analysis - II & Abstract Algebra - II)**  
**(Old Course)**

**Faculty Code : 003**

**Subject Code : 001617**

Time :  $2\frac{1}{2}$  Hours]

[Total Marks : 70]

**Instructions :** (1) All questions are compulsory.

(2) Figures to the right indicate full marks of the question.

1 Answers the following questions in short : 20

- (1) How many non unit elements in the ring  $(\mathbb{Z}_4, +_4, \times_4)$ ?
- (2) What is the multiplicative inverse of 4 in  $(\mathbb{Z}_7, +_7, \times_7)$ ?
- (3) List all the ideals of the ring  $(\mathbb{R}, +, \cdot)$ .
- (4) Let  $f : G \rightarrow G; f(g) = e(g \in G)$ , be a group homomorphism, where  $e$  is the identity of  $G$ . Find  $\ker f$ .
- (5) True or False : Every field is an integral domain.
- (6) True or False :  $\{0\}$  is a connected subset of  $\mathbb{R}$ .
- (7) Give an example of a compact metric space.
- (8) Give an example of a non-commutative ring with unity.
- (9) If  $f = (2, 8, 2, 11, 0, 0, 0, \dots)$  and  $g = (-1, -1, 0, -2, 0, 0, 0, \dots)$ , then find  $f + g$ .
- (10) Find  $L(t^5)$ .
- (11) Find  $L^{-1}\left(\frac{s^2 - \pi s + e}{s^3}\right)$ .

(12) Find convolution product of  $f(t) = t^2$  and  $g(t) = t$ .

(13) Find  $L^{-1}\left(\frac{1}{s-\pi}\right)$ .

(14) State First Shifting Theorem for Laplace Transform.

(15) Define : Compact metric space.

(16) Define : Kernel of group homomorphism.

(17) Define : Countable set.

(18) Define : Laplace transform.

(19) Define : Subring.

(20) Define : Ideal.

**2** (A) Attempt Any **Three** : **6**

(1) Show that  $\mathbb{N}$  is not a compact subset of  $\mathbb{R}$ .

(2) Give an example of a subset of  $\mathbb{R}$  which is not connected.

(3) Define : Sequentially compact metric space.

(4) Show that  $\{-1, 0, 1\}$  is a compact subset of  $\mathbb{R}$ .

(5) Find Laplace transform of  $f(t) = \begin{cases} \sin t & 0 < t < \pi \\ 0 & t > \pi \end{cases}$

(6) Find  $L^{-1}(F(s))$ . Where  $F(s) = \log \frac{s+a}{s+b}$ .

(B) Attempt Any **Three** : **9**

(1) If  $X$  is a finite set, then show that  $(X, d)$  with a discrete metric is compact space.

(2) Show that  $\mathbb{Q}$  is countable.

(3) Show that every compact subset of a metric space is bounded.

(4) Prove that continuous image of a compact set is compact.

(5) Find Laplace transform of  $f(t) = t \cos^2 t$ .

(6) Find inverse Laplace transform of

$$F(s) = \frac{2s+3}{s^2 + 2s + 2}.$$

(C) Attempt Any **Two** : 10

- (1) State and prove Convolution Theorem.
- (2) State and prove Heine-Borel Theorem for  $\mathbb{R}$ .
- (3) Prove that every closed subset of a compact metric space  $(X, d)$  is a compact.
- (4) Find inverse Laplace transform of
$$F(s) = \frac{s+2}{s(s+1)(s+3)}.$$
- (5) Evaluate  $\int_0^\infty e^{-3t} t \sin t dt.$

**3** (A) Attempt Any **Three** : 6

- (1) Show that  $(\mathbb{Z}_6, +_6, \times_6)$  is not an integral domain.
- (2) What is the zero element of the ring  $(M_2(\mathbb{R}), +, \cdot)$ ?
- (3) Show that in an integral domain 0 and 1 are the only idempotent elements.
- (4) Show that  $\mathbb{Z}[\sqrt{7}] = \{a + b\sqrt{7} \mid a, b \in \mathbb{Z}\}$  is not a field under usual addition and multiplication.
- (5) Does  $S = \{A \in M_2(\mathbb{R}) \mid \det(A) = 1\}$  is a subring of  $(M_2(\mathbb{R}), +, \cdot)$ ? Justify.
- (6) What is the characteristic of the ring  $(\mathbb{Z}_4, +_4, \times_4)$ ?

(B) Attempt Any **Three** : 9

- (1) Prove that intersection of two ideals of a ring is also an ideal of the ring.
- (2) Let  $I, J$  be ideals of a commutative ring  $R$ . Show that if  $I \cup J$  is an ideal in  $R$ , then  $I \subset J$  or  $J \subset I$ .
- (3) Let  $I$  be an ideal of a commutative ring with unity. Show that if  $1 \in I$ , then  $I = R$ .

(4) Show that  $(\mathbb{Z}_n, +_n, \times_n)$  is a principal ideal ring.

(5) Show that the polynomial  

$$g(x) = 3x^5 + 15x^4 - 20x^3 + 10x + 20$$
 is  
irreducible over  $\mathbb{Q}$ .

(6) Prove that the characteristic of an integral domain  
is 0 or prime.

(C) Attempt Any **Two** : **10**

(1) Let  $R$  be a ring with unity. Then prove that : the characteristic of  $R$  is  $n$  iff  $n$  is the smallest positive integer such that  $n1 = 0$ .

(2) State and prove Fundamental Theorem of group homomorphism.

(3) Prove that every finite integral domain is a field.

(4) Prove that field has no proper ideal.

(5) Let  $\varphi : G \rightarrow \bar{G}$  be a group homomorphism. Show that  $\varphi$  is one-one iff  $\ker \varphi = \{e\}$ .

---